Dimethyl fumarate inhibits osteoclastsviaattenuation of reactive oxygen species signalling by augmented antioxidation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dimethyl fumarate inhibits osteoclasts via attenuation of reactive oxygen species signalling by augmented antioxidation

Bone destructive diseases are common worldwide and are caused by dysregulation of osteoclast formation and activation. During osteoclastogenesis, reactive oxygen species (ROS) play a role in the intracellular signalling triggered by receptor activator of nuclear factor-κB ligand (RANKL) stimulation. Previously, we demonstrated that induction of antioxidant enzymes by Nrf2 activation using Nrf2-...

متن کامل

Role of reactive oxygen species in cell signalling pathways.

Reactive oxygen species (ROS) were originally thought to only be released by phagocytic cells during their role in host defence. It is now clear that ROS have a cell signalling role in many biological systems, both in animals and in plants. ROS induce programmed cell death or necrosis, induce or suppress the expression of many genes, and activate cell signalling cascades, such as those involvin...

متن کامل

O 22: Reactive Oxygen Species and Epilepsy

Seizure activity has been proposed to result in the generation of reactive oxygen species (ROS), which then contribute to seizure-induced neuronal damage and eventually cell death. Although the mechanisms of seizure-induced ROS generation are unclear, mitochondria and cellular calcium overload have been proposed to have a crucial role. We aim to determine the sources of seizure-induced ROS and ...

متن کامل

Reactive oxygen species are signalling molecules for skeletal muscle adaptation

Increased reactive oxygen species (ROS) production is crucial to the remodelling that occurs in skeletal muscle in response to both exercise training and prolonged periods of disuse. This review discusses the redox-sensitive signalling pathways that are responsible for this ROS-induced skeletal muscle adaptation. We begin with a discussion of the sites of ROS production in skeletal muscle fibre...

متن کامل

Redox signalling involving NADPH oxidase-derived reactive oxygen species.

Increased oxidative stress plays an important role in the pathophysiology of many diseases such as atherosclerosis, diabetes mellitus, myocardial infarction and heart failure. In addition to the well-known damaging effects of oxygen-free radicals, ROS (reactive oxygen species) also have signalling roles, acting as second messengers that modulate the activity of diverse intracellular signalling ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Cellular and Molecular Medicine

سال: 2017

ISSN: 1582-1838

DOI: 10.1111/jcmm.13367